Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Vaccine ; 41(30): 4422-4430, 2023 Jul 05.
Article in English | MEDLINE | ID: covidwho-20244793

ABSTRACT

BACKGROUND: On 2/27/2021, FDA authorized Janssen COVID-19 Vaccine (Ad.26.COV2.S) for use in individuals 18 years of age and older. Vaccine safety was monitored using the Vaccine Adverse Event Reporting System (VAERS), a national passive surveillance system, and v-safe, a smartphone-based surveillance system. METHODS: VAERS and v-safe data from 2/27/2021 to 2/28/2022 were analyzed. Descriptive analyses included sex, age, race/ethnicity, seriousness, AEs of special interest (AESIs), and cause of death. For prespecified AESIs, reporting rates were calculated using the total number of doses of Ad26.COV2.S administered. For myopericarditis, observed-to-expected (O/E) analysis was performed based on the number verified cases, vaccine administration data, and published background rates. Proportions of v-safe participants reporting local and systemic reactions, as well as health impacts, were calculated. RESULTS: During the analytic period, 17,018,042 doses of Ad26.COV2.S were administered in the United States, and VAERS received 67,995 reports of AEs after Ad26.COV2.S vaccination. Most AEs (59,750; 87.9 %) were non-serious and were similar to those observed during clinical trials. Serious AEs included COVID-19 disease, coagulopathy (including thrombosis with thrombocytopenia syndrome; TTS), myocardial infarction, Bell's Palsy, and Guillain-Barré syndrome (GBS). Among AESIs, reporting rates per million doses of Ad26.COV2.S administered ranged from 0.06 for multisystem inflammatory syndrome in children to 263.43 for COVID-19 disease. O/E analysis revealed elevated reporting rate ratios (RRs) for myopericarditis; among adults ages 18-64 years, the RR was 3.19 (95 % CI 2.00, 4.83) within 7 days and 1.79 (95 % CI 1.26, 2.46) within 21 days of vaccination. Of 416,384 Ad26.COV2.S recipients enrolled into v-safe, 60.9 % reported local symptoms (e.g. injection site pain) and 75.9 % reported systemic symptoms (e.g., fatigue, headache). One-third of participants (141,334; 33.9 %) reported a health impact, but only 1.4 % sought medical care. CONCLUSION: Our review confirmed previously established safety risks for TTS and GBS and identified a potential safety concern for myocarditis.


Subject(s)
COVID-19 Vaccines , COVID-19 , Guillain-Barre Syndrome , Adolescent , Adult , Child , Humans , Ad26COVS1 , Adverse Drug Reaction Reporting Systems , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , United States/epidemiology , Vaccines
2.
Open Forum Infect Dis ; 10(3): ofad100, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2312980

ABSTRACT

Fungal diseases are frequently coded as "unspecified mycoses" in data sets used to estimate disease burden. In a large administrative database, 50.9% of unspecified mycosis hospitalizations during 2019-2021 had positive fungal laboratory testing, most commonly Candida (79.1%), highlighting a potential need for improved coding practices and greater fungal laboratory testing.

3.
Emerg Infect Dis ; 29(4): 761-770, 2023 04.
Article in English | MEDLINE | ID: covidwho-2286800

ABSTRACT

SARS-CoV-2 infections among vaccinated nursing home residents increased after the Omicron variant emerged. Data on booster dose effectiveness in this population are limited. During July 2021-March 2022, nursing home outbreaks in 11 US jurisdictions involving >3 infections within 14 days among residents who had received at least the primary COVID-19 vaccine(s) were monitored. Among 2,188 nursing homes, 1,247 outbreaks were reported in the periods of Delta (n = 356, 29%), mixed Delta/Omicron (n = 354, 28%), and Omicron (n = 536, 43%) predominance. During the Omicron-predominant period, the risk for infection within 14 days of an outbreak start was lower among boosted residents than among residents who had received the primary vaccine series alone (risk ratio [RR] 0.25, 95% CI 0.19-0.33). Once infected, boosted residents were at lower risk for all-cause hospitalization (RR 0.48, 95% CI 0.40-0.49) and death (RR 0.45, 95% CI 0.34-0.59) than primary vaccine-only residents.


Subject(s)
COVID-19 , United States/epidemiology , Humans , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , SARS-CoV-2 , Nursing Homes , Disease Outbreaks
4.
J Thromb Thrombolysis ; 55(1): 189-194, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-2263482

ABSTRACT

The association between thromboembolic events (TE) and COVID-19 infection is not completely understood at the population level in the United States. We examined their association using a large US healthcare database. We analyzed data from the Premier Healthcare Database Special COVID-19 Release and conducted a case-control study. The study population consisted of men and non-pregnant women aged ≥ 18 years with (cases) or without (controls) an inpatient ICD-10-CM diagnosis of TE between 3/1/2020 and 6/30/2021. Using multivariable logistic regression, we assessed the association between TE occurrence and COVID-19 diagnosis, adjusting for demographic factors and comorbidities. Among 227,343 cases, 15.2% had a concurrent or prior COVID-19 diagnosis within 30 days of their index TE. Multivariable regression analysis showed a statistically significant association between a COVID-19 diagnosis and TE among cases when compared to controls (adjusted odds ratio [aOR] 1.75, 95% CI 1.72-1.78). The association was more substantial if a COVID-19 diagnosis occurred 1-30 days prior to index hospitalization (aOR 3.00, 95% CI 2.88-3.13) compared to the same encounter as the index hospitalization. Our findings suggest an increased risk of TE among persons within 30 days of being diagnosed COVID-19, highlighting the need for careful consideration of the thrombotic risk among COVID-19 patients, particularly during the first month following diagnosis.


Subject(s)
COVID-19 , Thromboembolism , Male , Female , Adult , Humans , United States/epidemiology , COVID-19/complications , COVID-19/epidemiology , Case-Control Studies , COVID-19 Testing , Risk Factors , Thromboembolism/epidemiology , Thromboembolism/etiology , Hospitalization , Retrospective Studies
5.
Infect Control Hosp Epidemiol ; : 1-8, 2022 May 19.
Article in English | MEDLINE | ID: covidwho-2278750

ABSTRACT

OBJECTIVES: The coronavirus disease 2019 pandemic caused substantial changes to healthcare delivery and antibiotic prescribing beginning in March 2020. To assess pandemic impact on Clostridioides difficile infection (CDI) rates, we described patients and trends in facility-level incidence, testing rates, and percent positivity during 2019-2020 in a large cohort of US hospitals. METHODS: We estimated and compared rates of community-onset CDI (CO-CDI) per 10,000 discharges, hospital-onset CDI (HO-CDI) per 10,000 patient days, and C. difficile testing rates per 10,000 discharges in 2019 and 2020. We calculated percent positivity as the number of inpatients diagnosed with CDI over the total number of discharges with a test for C. difficile. We used an interrupted time series (ITS) design with negative binomial and logistic regression models to describe level and trend changes in rates and percent positivity before and after March 2020. RESULTS: In pairwise comparisons, overall CO-CDI rates decreased from 20.0 to 15.8 between 2019 and 2020 (P < .0001). HO-CDI rates did not change. Using ITS, we detected decreasing monthly trends in CO-CDI (-1% per month, P = .0036) and HO-CDI incidence (-1% per month, P < .0001) during the baseline period, prior to the COVID-19 pandemic declaration. We detected no change in monthly trends for CO-CDI or HO-CDI incidence or percent positivity after March 2020 compared with the baseline period. CONCLUSIONS: While there was a slight downward trajectory in CDI trends prior to March 2020, no significant change in CDI trends occurred during the COVID-19 pandemic despite changes in infection control practices, antibiotic use, and healthcare delivery.

6.
J Infect Dis ; 227(7): 907-916, 2023 04 12.
Article in English | MEDLINE | ID: covidwho-2222662

ABSTRACT

BACKGROUND: Descriptions of changes in invasive bacterial disease (IBD) epidemiology during the coronavirus disease 2019 (COVID-19) pandemic in the United States are limited. METHODS: We investigated changes in the incidence of IBD due to Streptococcus pneumoniae, Haemophilus influenzae, group A Streptococcus (GAS), and group B Streptococcus (GBS). We defined the COVID-19 pandemic period as 1 March to 31 December 2020. We compared observed IBD incidences during the pandemic to expected incidences, consistent with January 2014 to February 2020 trends. We conducted secondary analysis of a health care database to assess changes in testing by blood and cerebrospinal fluid (CSF) culture during the pandemic. RESULTS: Compared with expected incidences, the observed incidences of IBD due to S. pneumoniae, H. influenzae, GAS, and GBS were 58%, 60%, 28%, and 12% lower during the pandemic period of 2020, respectively. Declines from expected incidences corresponded closely with implementation of COVID-19-associated nonpharmaceutical interventions (NPIs). Significant declines were observed across all age and race groups, and surveillance sites for S. pneumoniae and H. influenzae. Blood and CSF culture testing rates during the pandemic were comparable to previous years. CONCLUSIONS: NPIs likely contributed to the decline in IBD incidence in the United States in 2020; observed declines were unlikely to be driven by reductions in testing.


Subject(s)
Bacterial Infections , COVID-19 , United States/epidemiology , Humans , Infant , Incidence , Pandemics , COVID-19/epidemiology , Streptococcus pneumoniae , Haemophilus influenzae , Streptococcus agalactiae
7.
Infect Control Hosp Epidemiol ; 44(6): 1005-1009, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2185246

ABSTRACT

Among nursing home outbreaks of coronavirus disease 2019 (COVID-19) with ≥3 breakthrough infections when the predominant severe acute respiratory coronavirus virus 2 (SARS-CoV-2) variant circulating was the SARS-CoV-2 δ (delta) variant, fully vaccinated residents were 28% less likely to be infected than were unvaccinated residents. Once infected, they had approximately half the risk for all-cause hospitalization and all-cause death compared with unvaccinated infected residents.


Subject(s)
COVID-19 , Virus Diseases , Humans , SARS-CoV-2 , COVID-19 Vaccines , COVID-19/epidemiology , COVID-19/prevention & control , Nursing Homes , Disease Outbreaks/prevention & control
8.
Diabetes Care ; 44(8): 1788-1796, 2021 08.
Article in English | MEDLINE | ID: covidwho-2109595

ABSTRACT

OBJECTIVE: To assess whether risk of severe outcomes among patients with type 1 diabetes mellitus (T1DM) hospitalized for coronavirus disease 2019 (COVID-19) differs from that of patients without diabetes or with type 2 diabetes mellitus (T2DM). RESEARCH DESIGN AND METHODS: Using the Premier Healthcare Database Special COVID-19 Release records of patients discharged after COVID-19 hospitalization from U.S. hospitals from March to November 2020 (N = 269,674 after exclusion), we estimated risk differences (RD) and risk ratios (RR) of intensive care unit admission or invasive mechanical ventilation (ICU/MV) and of death among patients with T1DM compared with patients without diabetes or with T2DM. Logistic models were adjusted for age, sex, and race or ethnicity. Models adjusted for additional demographic and clinical characteristics were used to examine whether other factors account for the associations between T1DM and severe COVID-19 outcomes. RESULTS: Compared with patients without diabetes, T1DM was associated with a 21% higher absolute risk of ICU/MV (RD 0.21, 95% CI 0.19-0.24; RR 1.49, 95% CI 1.43-1.56) and a 5% higher absolute risk of mortality (RD 0.05, 95% CI 0.03-0.07; RR 1.40, 95% CI 1.24-1.57), with adjustment for age, sex, and race or ethnicity. Compared with T2DM, T1DM was associated with a 9% higher absolute risk of ICU/MV (RD 0.09, 95% CI 0.07-0.12; RR 1.17, 95% CI 1.12-1.22), but no difference in mortality (RD 0.00, 95% CI -0.02 to 0.02; RR 1.00, 95% CI 0.89-1.13). After adjustment for diabetic ketoacidosis (DKA) occurring before or at COVID-19 diagnosis, patients with T1DM no longer had increased risk of ICU/MV (RD 0.01, 95% CI -0.01 to 0.03) and had lower mortality (RD -0.03, 95% CI -0.05 to -0.01) in comparisons with patients with T2DM. CONCLUSIONS: Patients with T1DM hospitalized for COVID-19 are at higher risk for severe outcomes than those without diabetes. Higher risk of ICU/MV in patients with T1DM than in patients with T2DM was largely accounted for by the presence of DKA. These findings might further guide recommendations related to diabetes management and the prevention of COVID-19.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 2 , COVID-19 Testing , Hospitalization , Humans , Intensive Care Units , Respiration, Artificial , Risk Factors , SARS-CoV-2
9.
Vaccine ; 40(52): 7653-7659, 2022 Dec 12.
Article in English | MEDLINE | ID: covidwho-2096113

ABSTRACT

BACKGROUND: Risk of experiencing a systemic adverse event (AE) after mRNA coronavirus disease 2019 (COVID-19) vaccination may be greater among persons with a history of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection; data on serious events are limited. We assessed if adults reporting systemic AEs resulting in emergency department visits or hospitalizations during days 0-7 after mRNA COVID-19 vaccine dose 1 were more likely to have a history of prior SARS-CoV-2 infection compared with persons who reported no or non-severe systemic AEs. METHODS: We conducted a nested case-control study using v-safe surveillance data. Participants were ≥ 18 years and received dose 1 during December 14, 2020─May 9, 2021. Cases reported severe systemic AEs 0-7 days after vaccination. Three controls were frequency matched per case by age, vaccination date, and days since vaccination. Follow-up surveys collected SARS-CoV-2 histories. RESULTS: Follow-up survey response rates were 38.6 % (potential cases) and 56.8 % (potential controls). In multivariable analyses including 3,862 case-patients and 11,586 controls, the odds of experiencing a severe systemic AE were 2.4 (Moderna, mRNA-1273; 95 % confidence interval [CI]: 1.89, 3.09) and 1.5 (Pfizer-BioNTech, BNT162b2; 95 % CI: 1.17, 2.02) times higher among participants with pre-vaccination SARS-CoV-2 histories compared with those without. Medical attention of any kind for symptoms during days 0-7 following dose 2 was not common among case-patients or controls. CONCLUSIONS: History of SARS-CoV-2 infection was significantly associated with severe systemic AEs following dose 1 of mRNA COVID-19 vaccine; the effect varied by vaccine received. Most participants who experienced severe systemic AEs following dose 1 did not require medical attention of any kind for symptoms following dose 2. Vaccine providers can use these findings to counsel patients who had pre-vaccination SARS-CoV-2 infection histories, experienced severe systemic AEs following dose 1, and are considering not receiving additional mRNA COVID-19 vaccine doses.


Subject(s)
COVID-19 , Adult , Humans , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , SARS-CoV-2 , RNA, Messenger , BNT162 Vaccine , Case-Control Studies , Vaccination/adverse effects
10.
Clin Infect Dis ; 75(Supplement_2): S147-S154, 2022 Oct 03.
Article in English | MEDLINE | ID: covidwho-2051360

ABSTRACT

BACKGROUND: Residents of nursing homes experience disproportionate morbidity and mortality related to coronavirus disease 2019 (COVID-19) and were prioritized for vaccine introduction. We evaluated COVID-19 vaccine effectiveness (VE) in preventing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections among nursing home residents. METHODS: We used a retrospective cohort of 4315 nursing home residents during 14 December 2020-9 November 2021. A Cox proportional hazards model was used to estimate hazard ratios comparing residents with a completed vaccination series with unvaccinated among those with and without prior SARS-CoV-2 infection, by vaccine product, and by time period. RESULTS: Overall adjusted VE was 58% (95% confidence interval [CI], 44% to 69%) among residents without a history of SARS-CoV-2 infection. During the pre-Delta period, the VE within 150 days of receipt of the second dose of Pfizer-BioNTech (67%; 95% CI, 40% to 82%) and Moderna (75%; 95% CI, 32% to 91%) was similar. During the Delta period, VE measured >150 days after the second dose was 33% (95% CI, -2% to 56%) for Pfizer-BioNTech and 77% (95% CI, 48% to 91%) for Moderna. Rates of infection were 78% lower (95% CI, 67% to 85%) among residents with prior SARS-CoV-2 infection and completed vaccination series compared with unvaccinated residents without a history of SARS-CoV-2 infection. CONCLUSIONS: COVID-19 vaccines were effective in preventing SARS-CoV-2 infections among nursing home residents, and history of prior SARS-CoV-2 infection provided additional protection. Maintaining high coverage of recommended doses of COVID-19 vaccines remains a critical tool for preventing infections in nursing homes.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Nursing Homes , Retrospective Studies , Vaccination
11.
Clin Infect Dis ; 75(Supplement_2): S294-S297, 2022 Oct 03.
Article in English | MEDLINE | ID: covidwho-2051353

ABSTRACT

We described bacterial/fungal coinfections and antibiotic-resistant infections among inpatients with a diagnosis of coronavirus disease 2019 (COVID-19) and compared findings in those with a diagnosis of influenza like illness. Less than 10% of inpatients with COVID-19 had bacterial/fungal coinfection. Longer lengths of stay, critical care stay, and mechanical ventilation contribute to increased incidence of hospital-onset infections among inpatients with COVID-19.


Subject(s)
COVID-19 , Coinfection , Anti-Bacterial Agents/therapeutic use , Coinfection/epidemiology , Hospitals , Humans , Inpatients , SARS-CoV-2 , United States
12.
J Hosp Med ; 17(12): 984-989, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2013580

ABSTRACT

The disruptions of the coronavirus disease 2019 (COVID-19) pandemic impacted the delivery and utilization of healthcare services with potential long-term implications for population health and the hospital workforce. Using electronic health record data from over 700 US acute care hospitals, we documented changes in admissions to hospital service areas (inpatient, observation, emergency room [ER], and same-day surgery) during 2019-2020 and examined whether surges of COVID-19 hospitalizations corresponded with increased inpatient disease severity and death rate. We found that in 2020, hospitalizations declined by 50% in April, with greatest declines occurring in same-day surgery (-73%). The youngest patients (0-17) experienced largest declines in ER, observation, and same-day surgery admissions; inpatient admissions declined the most among the oldest patients (65+). Infectious disease admissions increased by 52%. The monthly measures of inpatient case mix index, length of stay, and non-COVID death rate were higher in all months in 2020 compared with respective months in 2019.


Subject(s)
COVID-19 , Pandemics , Humans , Hospitalization , Emergency Service, Hospital , Hospitals
13.
MMWR Morb Mortal Wkly Rep ; 71(33): 1047-1051, 2022 Aug 19.
Article in English | MEDLINE | ID: covidwho-1994635

ABSTRACT

On May 17, 2022, the Food and Drug Administration (FDA) amended the Emergency Use Authorization (EUA) for BNT162b2 (Pfizer-BioNTech) COVID-19 vaccine to authorize a homologous* booster dose for children aged 5-11 years ≥5 months after receipt of the second primary series dose† (1) based on findings from a clinical trial conducted among 401 children aged 5-11 years (2). To further characterize the safety of booster vaccination in this age group, CDC reviewed adverse events and health impact assessments after receipt of a Pfizer-BioNTech third dose reported to v-safe, a voluntary smartphone-based safety surveillance system for adverse events occurring after COVID-19 vaccination, and adverse events reported to the Vaccine Adverse Event Reporting System (VAERS), a passive vaccine safety surveillance system comanaged by CDC and FDA. During May 17-July 31, 2022, approximately 657,302 U.S. children aged 5-11 years received a third Pfizer-BioNTech dose (either a third primary series dose administered to immunocompromised children or a booster dose administered to immunocompetent children)§; 3,249 Pfizer-BioNTech third doses were reported to v-safe for children in this age group. Local and systemic reactions were reported to v-safe after a second dose and a third dose with similar frequency; some reactions (e.g., pain) were reported to be moderate or severe more frequently after a third dose. VAERS received 581 reports of adverse events after receipt of a Pfizer-BioNTech third dose by children aged 5-11 years; 578 (99.5%) reports were considered nonserious, and the most common events reported were vaccine administration errors. Three (0.5%) reports were considered serious; no reports of myocarditis or death were received. Local and systemic reactions were common among children after Pfizer-BioNTech third dose vaccination, but reports of serious adverse events were rare. Initial safety findings are consistent with those of the clinical trial (2).


Subject(s)
COVID-19 , Vaccines , Adverse Drug Reaction Reporting Systems , BNT162 Vaccine , COVID-19 Vaccines/adverse effects , Child , Humans , Immunization, Secondary , United States/epidemiology , Vaccines/adverse effects
14.
Pediatrics ; 150(2)2022 08 01.
Article in English | MEDLINE | ID: covidwho-1974395

ABSTRACT

BACKGROUND AND OBJECTIVES: Limited postauthorization safety data for the Pfizer-BioNTech coronavirus disease 2019 vaccination among children ages 5 to 11 years are available, particularly for the adverse event myocarditis, which has been detected in adolescents and young adults. We describe adverse events observed during the first 4 months of the United States coronavirus disease 2019 vaccination program in this age group. METHODS: We analyzed data from 3 United States safety monitoring systems: v-safe, a voluntary smartphone-based system that monitors reactions and health effects; the Vaccine Adverse Events Reporting System (VAERS), the national spontaneous reporting system comanaged by the Centers for Disease Control and Prevention and Food and Drug Administration; and the Vaccine Safety Datalink, an active surveillance system that monitors electronic health records for prespecified events, including myocarditis. RESULTS: Among 48 795 children ages 5 to 11 years enrolled in v-safe, most reported reactions were mild-to-moderate, most frequently reported the day after vaccination, and were more common after dose 2. VAERS received 7578 adverse event reports; 97% were nonserious. On review of 194 serious VAERS reports, 15 myocarditis cases were verified; 8 occurred in boys after dose 2 (reporting rate 2.2 per million doses). In the Vaccine Safety Datalink, no safety signals were detected in weekly sequential monitoring after administration of 726 820 doses. CONCLUSIONS: Safety findings for Pfizer-BioNTech vaccine from 3 United States monitoring systems in children ages 5 to 11 years show that most reported adverse events were mild and no safety signals were observed in active surveillance. VAERS reporting rates of myocarditis after dose 2 in this age group were substantially lower than those observed among adolescents ages 12 to 15 years.


Subject(s)
COVID-19 Vaccines , COVID-19 , Myocarditis , Adolescent , Adverse Drug Reaction Reporting Systems , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Child , Child, Preschool , Humans , Male , Myocarditis/etiology , United States/epidemiology , Young Adult
15.
MMWR Morb Mortal Wkly Rep ; 71(30): 971-976, 2022 Jul 29.
Article in English | MEDLINE | ID: covidwho-1964793

ABSTRACT

The Advisory Committee on Immunization Practices (ACIP) recommends that all persons aged ≥5 years receive 1 booster dose of a COVID-19 vaccine after completion of their primary series.* On March 29, 2022, the Food and Drug Administration (FDA) authorized a second mRNA booster dose ≥4 months after receipt of a first booster dose for adults aged ≥50 years and persons aged ≥12 years with moderate to severe immunocompromise (1,2). To characterize the safety of a second mRNA booster dose among persons aged ≥50 years, CDC reviewed adverse events and health impact assessments reported to v-safe and the Vaccine Adverse Event Reporting System (VAERS) after receipt of a second mRNA booster dose during March 29-July 10, 2022. V-safe is a voluntary smartphone-based U.S. active surveillance system that monitors adverse events occurring after COVID-19 vaccination. VAERS is a U.S. passive surveillance system for monitoring adverse events after vaccination, managed by CDC and FDA (3). During March 29-July 10, 2022, approximately 16.8 million persons in the United States aged ≥50 years received a fourth dose.† Among 286,380 v-safe registrants aged ≥50 years who reported receiving a second booster of an mRNA vaccine, 86.9% received vaccines from the same manufacturer for all 4 doses (i.e., homologous vaccination). Among registrants who reported homologous vaccination, injection site and systemic reactions were less frequent after the second booster dose than after the first booster dose. VAERS received 8,515 reports of adverse events after second mRNA booster doses among adults aged ≥50 years, including 8,073 (94.8%) nonserious and 442 (5.1%) serious events. CDC recommends that health care providers and patients be advised that local and systemic reactions are expected after a second booster dose, and that serious adverse events are uncommon.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adverse Drug Reaction Reporting Systems , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Humans , Middle Aged , mRNA Vaccines/adverse effects
16.
MMWR Morb Mortal Wkly Rep ; 71(28): 899-903, 2022 Jul 15.
Article in English | MEDLINE | ID: covidwho-1934746

ABSTRACT

Persons with moderate to severe immunocompromising conditions are at risk for severe COVID-19, and their immune response to COVID-19 vaccination might not be as robust as the response in persons who are not immunocompromised* (1). The Advisory Committee on Immunization Practices (ACIP) recommends that immunocompromised persons aged ≥12 years complete a 3-dose primary mRNA COVID-19 vaccination series followed by a first booster dose (dose 4) ≥3 months after dose 3 and a second booster dose (dose 5) ≥4 months after dose 4.† To characterize the safety of first booster doses among immunocompromised persons aged ≥12 years during January 12, 2022-March 28, 2022, CDC reviewed adverse events and health impact assessments reported to v-safe and the Vaccine Adverse Event Reporting System (VAERS) during the week after receipt of an mRNA COVID-19 first booster dose. V-safe is a voluntary smartphone-based safety surveillance system for adverse events after COVID-19 vaccination. VAERS is a passive surveillance system for all vaccine-associated adverse events co-managed by CDC and the Food and Drug Administration (FDA). A fourth mRNA dose reported to v-safe or VAERS during January 12, 2022-March 28, 2022, was presumed to be an mRNA COVID-19 vaccine booster dose administered to an immunocompromised person because no other population was authorized to receive a fourth dose during that period (2,3). In the United States, during January 12, 2022-March 28, 2022, approximately 518,113 persons aged ≥12 years received a fourth dose. Among 4,015 v-safe registrants who received a fourth dose, local and systemic reactions were less frequently reported than were those following dose 3 of their primary series. VAERS received 145 reports after fourth doses; 128 (88.3%) were nonserious and 17 (11.7%) were serious. Health care providers, immunocompromised persons, and parents of immunocompromised children should be aware that local and systemic reactions are expected after a first booster mRNA COVID-19 vaccine dose, serious adverse events are rare, and safety findings were consistent with those previously described among nonimmunocompromised persons (4,5).


Subject(s)
COVID-19 Vaccines , COVID-19 , Immunization, Secondary , Adverse Drug Reaction Reporting Systems , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Humans , United States/epidemiology , Vaccines, Synthetic , mRNA Vaccines
17.
MMWR Morb Mortal Wkly Rep ; 71(9): 347-351, 2022 Mar 04.
Article in English | MEDLINE | ID: covidwho-1727016

ABSTRACT

As of February 20, 2022, only BNT162b2 (Pfizer-BioNTech) COVID-19 vaccine has been authorized for use in persons aged 12-17 years in the United States (1). The Food and Drug Administration (FDA) amended the Emergency Use Authorization (EUA) for Pfizer-BioNTech vaccine on December 9, 2021, to authorize a homologous* booster dose for persons aged 16-17 years ≥6 months after receipt of dose 2 (1). On January 3, 2022, authorization was expanded to include persons aged 12-15 years, and for all persons aged ≥12 years, the interval between dose 2 and booster dose was shortened to ≥5 months (1). To characterize the safety of Pfizer-BioNTech booster doses among persons aged 12-17 years (adolescents), CDC reviewed adverse events and health impact assessments during the week after receipt of a homologous Pfizer-BioNTech booster dose reported to v-safe, a voluntary smartphone-based safety surveillance system for adverse events after COVID-19 vaccination, and adverse events reported to the Vaccine Adverse Event Reporting System (VAERS), a passive vaccine safety surveillance system managed by CDC and FDA. During December 9, 2021-February 20, 2022, approximately 2.8 million U.S. adolescents received a Pfizer-BioNTech booster dose.† During this period, receipt of 3,418 Pfizer-BioNTech booster doses were reported to v-safe for adolescents. Reactions were reported to v-safe with equal or slightly higher frequency after receipt of a booster dose than after dose 2, were primarily mild to moderate in severity, and were most frequently reported the day after vaccination. VAERS received 914 reports of adverse events after Pfizer-BioNTech booster dose vaccination of adolescents; 837 (91.6%) were nonserious and 77 (8.4%) were serious. Health care providers, parents, and adolescents should be advised that local and systemic reactions are expected among adolescents after homologous Pfizer-BioNTech booster vaccination, and that serious adverse events are rare.


Subject(s)
Adverse Drug Reaction Reporting Systems , BNT162 Vaccine/administration & dosage , COVID-19 Vaccines/administration & dosage , Adolescent , BNT162 Vaccine/adverse effects , COVID-19 Vaccines/adverse effects , Child , Female , Humans , Immunization, Secondary/adverse effects , Male , Patient Safety , United States
18.
MMWR Morb Mortal Wkly Rep ; 71(7): 249-254, 2022 Feb 18.
Article in English | MEDLINE | ID: covidwho-1689714

ABSTRACT

During September 22, 2021-February 6, 2022, approximately 82.6 million U.S. residents aged ≥18 years received a COVID-19 vaccine booster dose.* The Food and Drug Administration (FDA) has authorized a booster dose of either the same product administered for the primary series (homologous) or a booster dose that differs from the product administered for the primary series (heterologous). These booster authorizations apply to all three COVID-19 vaccines used in the United States (1-3).† The Advisory Committee on Immunization Practices (ACIP) recommended preferential use of an mRNA COVID-19 vaccine (mRNA-1273 [Moderna] or BNT162b2 [Pfizer-BioNTech]) for a booster, even for persons who received the Ad26.COV2.S (Janssen [Johnson & Johnson]) COVID-19 vaccine for their single-dose primary series.§ To characterize the safety of COVID-19 vaccine boosters among persons aged ≥18 years during September 22, 2021-February 6, 2022, CDC reviewed adverse events and health impact assessments following receipt of a booster that were reported to v-safe, a voluntary smartphone-based safety surveillance system for adverse events after COVID-19 vaccination, and adverse events reported to the Vaccine Adverse Event Reporting System (VAERS), a passive vaccine safety surveillance system managed by CDC and FDA. Among 721,562 v-safe registrants aged ≥18 years who reported receiving a booster, 88.8% received homologous COVID-19 mRNA vaccination. Among registrants who reported a homologous COVID-19 mRNA booster dose, systemic reactions were less frequent following the booster (58.4% [Pfizer-BioNTech] and 64.4% [Moderna], respectively) than were those following dose 2 (66.7% and 78.4%, respectively). The adjusted odds of reporting a systemic reaction were higher following a Moderna COVID-19 vaccine booster, irrespective of the vaccine received for the primary series. VAERS has received 39,286 reports of adverse events after a COVID-19 mRNA booster vaccination for adults aged ≥18 years, including 36,282 (92.4%) nonserious and 3,004 (7.6%) serious events. Vaccination providers should educate patients that local and systemic reactions are expected following a homologous COVID-19 mRNA vaccine booster; however, these reactions appear less common than those following dose 2 of an mRNA-based vaccine. CDC and FDA will continue to monitor vaccine safety and provide data to guide vaccine recommendations and protect public health.


Subject(s)
Adverse Drug Reaction Reporting Systems , COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Safety , Adult , Aged , COVID-19 Vaccines/adverse effects , Female , Humans , Immunization, Secondary/adverse effects , Male , Middle Aged , SARS-CoV-2/immunology , United States
19.
Epidemiol Infect ; 150: e26, 2022 01 17.
Article in English | MEDLINE | ID: covidwho-1683880

ABSTRACT

Multisystem inflammatory syndrome in adults (MIS-A) is a hyperinflammatory illness related to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. The characteristics of patients with this syndrome and the frequency with which it occurs among patients hospitalised after SARS-CoV-2 infection are unclear. Using the Centers for Disease Control and Prevention case definition for MIS-A, we created ICD-10-CM code and laboratory criteria to identify potential MIS-A patients in the Premier Healthcare Database Special COVID-19 Release, a database containing patient-level information on hospital discharges across the United States. Modified MIS-A criteria were applied to hospitalisations with discharge from March to December 2020. The proportion of hospitalisations meeting electronic health record criteria for MIS-A and descriptive statistics for patients in the potential MIS-A cohort were calculated. Of 34 515 SARS-CoV-2-related hospitalisations with complete clinical and laboratory data, 53 met modified criteria for MIS-A (0.15%). The median age was 62 years (IQR 52-74). Most patients met the severe cardiac illness criterion through either myocarditis (66.0%) or new-onset heart failure (35.8%). A total of 79.2% of patients required ICU admission, while 43.4% of patients in the cohort died. MIS-A appears to be a rare but severe outcome of SARS-CoV-2 infection. Additional studies are needed to investigate how this syndrome differs from severe coronavirus disease 2019 (COVID-19) in adults.


Subject(s)
COVID-19/complications , Systemic Inflammatory Response Syndrome/diagnosis , Aged , COVID-19/diagnosis , COVID-19/ethnology , COVID-19/mortality , Cohort Studies , Databases, Factual , Female , Humans , Intensive Care Units , Male , Middle Aged , Systemic Inflammatory Response Syndrome/ethnology , Systemic Inflammatory Response Syndrome/mortality
20.
Open Forum Infect Dis ; 8(12): ofab561, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1666055

ABSTRACT

BACKGROUND: Information on the costs of inpatient care for patients with coronavirus disease 2019 (COVID-19) is very limited. This study estimates the per-patient cost of inpatient care for adult COVID-19 patients seen at >800 US hospitals. METHODS: Patients aged ≥18 years with ≥1 hospitalization during March 2020-July 2021 with a COVID-19 diagnosis code in a large electronic administrative discharge database were included. We used validated costs when reported; otherwise, costs were calculated using charges multiplied by cost-to-charge ratios. We estimated costs of inpatient care per patient overall and by severity indicator, age, sex, underlying medical conditions, and acute complications of COVID-19 using a generalized linear model with log link function and gamma distribution. RESULTS: The overall cost among 654673 patients hospitalized with COVID-19 was $16.2 billion. Estimated per-patient hospitalization cost was $24 826. Among surviving patients, estimated per-patient cost was $13 090 without intensive care unit (ICU) admission or invasive mechanical ventilation (IMV), $21 222 with ICU admission alone, and $59 742 with IMV. Estimated per-patient cost among patients who died was $27 017. Adjusted cost differential was higher among patients with certain underlying conditions (eg, chronic kidney disease [$12 391], liver disease [$8878], cerebrovascular disease [$7267], and obesity [$5933]) and acute complications (eg, acute respiratory distress syndrome [$43 912], pneumothorax [$25 240], and intracranial hemorrhage [$22 280]). CONCLUSIONS: The cost of inpatient care for COVID-19 patients was substantial through the first 17 months of the pandemic. These estimates can be used to inform policy makers and planners and cost-effectiveness analysis of public health interventions to alleviate the burden of COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL